A parallel plate capacitor with air between the plates has a capacitance of $9\ pF$ . The separation between its plates is $ 'd'$ .The space between the plates is now filled with two dielectrics. One of the dielectric has dielectric constant $K_1 = 6$ and thickness $\frac {d}{3}$ while the other one has dielectric constant $K_2 = 12$ and thickness $\frac {2d}{3}$ . Capacitance of the capacitor is now ......... $pF$
$18$
$25$
$81$
$20$
An electric dipole is situated in an electric field of uniform intensity $E$ whose dipole moment is $p$ and moment of inertia is $I$. If the dipole is displaced slightly from the equilibrium position, then the angular frequency of its oscillations is
A thin spherical conducting shell of radius $R$ has charge $q$. Another charge $Q$ is placed at the centre of the shell. The electrostatic potential at a point $P$ at a distance $R/2$ from the centre of the shell is
A $2\,\mu F$ capacitor is charged to a potential $=10\ V$ . Another $4\,\mu F$ capacitor is charged to a potential $= 20\ V$ . The two capacitors are then connected in a single loop, with the positive plate of one connected with negative plate of the other. What heat is evolved in the circuit ?.........$\mu J$
Calculate the work done in taking a charge $-2 \times 10^{-9} \,C$ from $A$ to $B$ via $C$ is ......... (in diagram)
If an insulated non-conducting sphere of radius $R$ has charge density $\rho .$ The electric field at a distance $r$ from the centre of sphere $(r < R)$ will be